
Compound 
MgC19 
MnCl~ 
FeC1 e 
CoCl~ 
NiC12 
CdCl~ 
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Table 1. Unit-cell constants of divalent metal chlorides (1~) 
Hexagonal cell, space group R-3rn (D~d) 

Grime & Santos, 
1934 (CoC12) Present work 

Pauling & Hoard, ~ ~ - -  
Ferrari et al.* 1930 (CdC12)  Graphical method Least-squares method 
a c a c a c a c 

3.603 17.627 3.632 17.78 3.632 +0.004 17.795-+0.016 
3.682 17-480 3.709 17.59 3.711 _+0.002 17.59 +0.07 
3.585 17.555 3.593 17-60 3.593 -+0-003 17.58 -+0.09 
3.547 17.385 3.551 17.46 3.553 17.41 3.553 -+0.001 17.39 --+0.05 
3.542 17.355 3.481 17.30 3.478 -+0.001~f 17.41 +0.12 t 

3.862 17.495 3.845 17.49 3.8457-+0.0003 17.48 -+0.02 

* Bruni & Ferrari (1925, 1926, 1927), Ferrari (1927), Ferrari, Celeri & Giorgi (1929). 
~f From a single crystal, a----3.483+0.006/~, e----17-40-+0.03/~. 
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Unit-cel l  da ta  have  been found to be a = 3.483 _+ 0.006, 
c = 17-40 -+ 0.03 A. Calculated and  observed densi ty  were 
~c=3.537 g.cm -a and  ~o=3.51 g.cm -a. The (hO.1) inte- 
gra ted  reflexions were recorded by an integrat ing 
Weissenberg camera  and  measured  by  a micro- 
densi tometer .  Polar izat ion and Lorentz  corrections were 
int roduced.  Absorpt ion corrections were calculated by 
Ferrari ,  Bra ibant i  & Tiripicchio's (1961) me thod ;  a 
contr ibut ion,  due to the L indemann  tube, deduced from 
a curve for cylindrical  specimens was added  to the 
transmission factors calculated.  Atomic form factors were 
eva lua ted  graphical ly from the Thomas  & U m e d a  (1957) 
data .  Dur ing ref inement ,  anomalous  dispersion (Inter- 
national Tables for X-ray Crystallography, 1961) and 
secondary ext inct ion (Pinnock, Taylor  & Lipson, 1956) 
were t aken  into account .  

Ni is in position (a) and C1 in position (c) of the space 
group R3m. Only the positional pa ramete r  zcl and  the 
thermal  parameters  were refined by the  least-squares 
method .  

The result ing chlorine coordinate  is zci=0.2551-+ 
0-0008. The variat ions of the thermal  parameters  from 
the  isotropic value (B=2.0-+0-2  /~)  are wi th in  the 
e.s.d.'s. 

The s t ructure  (Strulcturbericht, vol. I,  p. 742) is formed 
by  oc tahedra  [NiCl6/3] grouped in layers. The m e t a l -  
halogen distance is Ni-CI=2.426_+0.008 /~, which is 
somewhat  shorter  t han  the sum of the ionic radii. The 
distances between two chlorine a toms are C l . . .  Cl = 
3"385 0 . 0 1 6  A and 3.483 +__0-006 A within each octahe- 
dron and  Cl • • • CI-- 3.674-+ 0.016 /~ between different 
octahedra .  The la t ter  distance is in good agreement  
wi th  twice the van der Waals radius of chlorine. The 
angles CI-Ni-Cl  are 89 -+ 3 ° and  92 -+ 3 °. 
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This communica t ion  describes interference phenomena  
result ing from two-dimensional  point  networks  which 
can be in terpre ted  ei ther in terms of moir~ pat terns  or 
dislocation models of pure twist  boundaries.  

Moird pa t te rns  m a y  be described as coarse arrange- 
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ments  produced by  the  superposit ion and, in this case, 
ro ta t ion of identical  fine networks.  The coarse pa t te rns  
are enlarged versions of the fine ones. Using Gevers's 
(1962) notat ion,  the size of the magnif ied moir6 image, 
A, is re la ted to the separat ion distance of the fine net- 
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Fig. 1. (a) E l e m e n t a r y  square  n e t w o r k  (a  = e = 0). 
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(b) E l e m e n t a r y  hexagona l  ne twork  (a  = e = 0). 
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Fig. 2. In te r fe rence  pa t t e rns  resul t ing f rom hexagona l  a r rays .  

(a)  a = e - - - - 4  °. (b) a = e = 7  °. (c) a = e = 1 8  °. 
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Fig. 3. In te r fe rence  pa t t e rns  resul t ing f rom square  arrays .  

(a)  a - - e - - - - 3  ° . (b) a - - - - e = 7  ° . (c) o ~ = e = 1 5  °. 
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work, dg, and the  angle of rotat ion of the networks with 
respect to each other, e, by the equat ion 

A = dg/2 sin ½~. (l) 

Various dislocation models have been proposed to 
represent  small angle boundaries in metals.  For  example, 
a pure twist boundary  results from the relative rotat ion 
of two grains about  an axis normal  to the plane of the 
boundary.  The atoms within the two grains comprising 
the boundary  will join together  continuously except along 
a ne twork of screw dislocations. I n  a twist boundary  
occurring in a simple cubic structure, the grains may  
have a common (100} plane, which is then  the plane of 
the boundary.  A twist  boundary  in a close-packed cubic 
structure has a common {111} plane, which is also the 
plane of the boundary.  In  the former case, the boundary  
is a square grid of screw dislocations; in the lat ter  case, 
the screw dislocations form a hexagonal  network.  
Both types of twist boundaries can be analyzed through 
the use of Frank 's  (1955) formula, 

a = 2  sin -1 (b/2h), (2) 

which relates the angle of rotation, a, the Buerger 's  
vector, b, of the dislocations comprising the  twist 
boundary,  and the distance between mesh centers, h, 
of the dislocation network.  

The above formulas are identical except for notat ion.  
The moir6 magnification, A, is the same as the separation 
between mesh centers, h, in the dislocation notat ion.  
The magni tude  of the  Buerger 's  vector, b, of a dislocation, 
is given by the separation of atoms in the close-packed 
direction, and is therefore equal to the dot  separation 

distance, dg, in moir6 terminology. The angles of rota- 
tion, a and e, are, by definition, equal. 

The few illustrations found in the literature, of the  
interference phenomena  described above, have  been 
produced by tedious draft ing methods.  The authors  
have developed a simple technique which enables these 
pat terns  to be easily generated.  The procedure permits  
the variat ion of the parameters  of interest  to be easily 
effected. 

Transparent  architectural  shading sheets containing 
uniformly spaced dots were used to obtain the  inter- 
ference patterns.  Fig. 1 illustrates the two e lementary  
fine networks. Rota t ion  of one such sheet wi th  respect 
to another  identical one gives a magnified cellular array, 
i.e. a moir6 pat tern.  Photographs were made  at  represen- 
ta t ive angles of rotation. Figs. 2 and 3 show the decrease 
in mesh size with increasing angle of rotation. One can 
also interpret  the  e lementary networks as models of 
atomic planes. Viewed in this light, the square arrays 
of dots are analogous to the {100} planes of a simple 
cubic structure;  hexagonal arrays are analogous to the  
(111} planes of a face-centered cubic structure. F rom the  
earlier discussion, it is clear tha t  the resulting pat terns  
cal also be considered as models of a pure twist  boundary.  

The authors wich to acknowledge the  financial sup- 
port of the  Office of Naval  Research. 
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Yt t r ium triiodide has been prepared by heat ing high 
pur i ty  (99.995%) y t t r ium meta l  in an excess of iodine 
vapor within an initially evacuated chamber  of high 
pur i ty  quartz. The resulting white  salt was driven into 
quartz capillaries and flame-sealed under  vacuum. The 
compound is highly hygroscopic and decomposes in air. 

Powder  diffraction photographs were taken with CuKa 
radiation, By comparison of the  pa t t e rn  wi th  tha t  of 
other triiodides (ASTM Powder  Data  File; Wyckoff), 
YI  a was found to crystallize in the space group R3 (C~i) 

* Present address: Texaco Research Center, Richmond, 
Virginia. 

with  the BiI 3 structure. The lattice constants for the  
hexagonal  uni t  cell at  20 °C are a---7.503 + 0.008 A and 
c - 2 0 . 8 1  +0.02 A. The corresponding X-ray densi ty is 
4.617 g.cm.-% 

We would like to thank  Mr W . E .  Sanburn of the  
Computer  Section for performing the computations.  
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